Survey of ISCO Applications in GA-
A Critical Review of Factors Contributing to Success

AIPG 4th Conference: Innovative Environmental Assessment and Remediation Technology

Kennesaw State University
September 12-13, 2012

Prepared by:
Ken Summerour, P.G.
Envirorisk Consultants, Inc.
www.eriskinc.com
Office: 770.864.9789
Cell: 770.241.6176
Introduction and Purpose of Talk

- Evaluation included 65 sites in Georgia treated with ISCO.
- Sites obtained from internal databases and state files.
- Review intended to broaden the industry’s understanding of ISCO applications performed without focusing on individual sites.
- Site names and facility ID’s were omitted.

Prepared by Ken Summerour, P.G.
What is In-Situ Chemical Oxidation?

- Chemical Oxidation involves breaking bonds of organic molecules using aggressive oxidant radicals and oxidative compounds.
- End products are carbon dioxide, water, and harmless salts.
- ISCO generally involves low to moderate pressure injections to treat contaminants in “smear zone” above/below the water table.
- Used for source area or small area (“spot” treatments) as well as larger plume sites.
- Treatment works on contact- need full oxidant contact for success! To reach target goals, desorption of contaminants from soil matrix into the groundwater is required.

Prepared by Ken Summerour, P.G.
Types of Chemical Oxidants

Common oxidants include:

- Catalyzed Hydrogen Peroxide (CHP) or Modified Fenton’s
- Activated Sodium Persulfate
- Sodium and Potassium Permanganate
- Specialty Oxidants/Proprietary Products

Prepared by Ken Summerour, P.G.
Catalyzed Hydrogen Peroxide (CHP)/Modified Fenton’s

- CHP or modified Fenton’s consists of hydrogen peroxide combined with an iron catalyst (chelates, iron salts), producing hydroxyl radicals (OH⁻).
- **Basic reaction:** \(H_2O_2 + Fe^{+2} \rightarrow OH^- + OH^- + Fe^{+3} \)
- Efficient in a short period of time/breaks down soil structure.
- Effective on a variety of hydrocarbons including NAPL.
- Effective on a variety of hydrocarbons including NAPL.
- Can produce Modified Fenton’s through in-situ generation of peroxide using peroxxygen compounds.
Activated Sodium Persulfate

- Oxidation is performed by combining sodium persulfate with a catalyst to release sulfate radicals.
- Reaction: $\text{S}_2\text{O}_8^{-2} + \text{activator} \rightarrow \text{SO}_4^{-} + (\text{SO}_4^{-} \text{ or } \text{SO}_4^{-2})$
- Common activators include: heat, metal catalysts (iron), H_2O_2, and pH buffers (<3 or >10), high pH buffering is preferred.
- Sulfate radicals comparable in oxidation strength to OH^{-} radicals.
- Sulfate radicals have a long persistence in subsurface (30-60 days) and low natural oxidant demand.
- Successful on a variety of VOCs and recalcitrant compounds.
Oxidant Descriptions (cont.)

Sodium or Potassium Permanganate

- The permanganate ion is a selective oxidant that works well on double-bonded chlorinated ethenes (PCE, TCE) and can also treat phenols, PAHs, pesticides, explosives, and some aromatics (not benzene).
- Weaker than radical oxidation: 1.7 eV as compared to 2.6 eV for SO_4^{2-} and 2.7 eV for OH^{-}.
- Long persistence in the subsurface (up to a year).
- Purple color aids in determining radius of influence (ROI).

Potassium Permanganate Candle
for Barrier Treatment

Prepared by Ken Summerour, P.G.
ISCO Site Evaluation Overview

- Sites were grouped by geologic province, oxidant chemistry, regulatory type/status.

- The data set was biased toward site availability.

- The majority of the sites were UST facilities located in the GA Piedmont province treated using activated persulfate.

- Sites with pilot injections were evaluated as initial or “spot” treatment applications.

- Sites were placed in 4 categories:
 1) Successful in achieving target goals (“spot” clean-up or full scale);
 2) Partially successful or success derived from combining remedial technologies;
 3) Unsuccessful; and
 4) Unknown or confirmatory data not available (5%).

Prepared by Ken Summerour, P.G.
Geologic Provinces

- Piedmont (75%)
- Piedmont/Blue Ridge (3%)
- Coastal Plains (17%)
- Valley and Ridge (5%)

Prepared by Ken Summerour, P.G.
ISCO Chemistry

- Permanganate (7%)
- Activated Persulfate (63%)
- H$_2$O$_2$, CHP, Fentons (25%)
- Other (5%)
Site Categories

- UST (65%)
- HSRA (19%)
- VRP (8%)
- Non HSI/Brownfield (4%)
- RCRA (4%)

Prepared by Ken Summerour, P.G.
Evaluation of ISCO Performance

- Successful (35%)
- Unsuccessful (43%)
- Unknown/Confirmatory results not available (5%)
- Partially/Success with use of another technology (17%)

Prepared by Ken Summerour, P.G.
Factors Contributing to ISCO Success

- Lower volume of sorbed contamination in saturated soils.
- Higher oxidant doses generally employed with tighter injection spacing.
- 13 of the sites were completed with 1 or 2 injection applications, with 10 sites requiring multiple injections.
- Only 2 sites had “soil only” treatments. Both were successful due to the presence of denser saprolite below the injection zone which aided in horizontal distribution.
- Success occurred using all oxidant chemistries and in different lithologies.
- Delivery methods (i.e. injection through wells vs. DPT rods) did not appear to affect outcome.
Factors Contributing to Partial Success

- This category includes sites where success could only be achieved with supplemental technologies (extraction, mobile MPE, SVE, source removal, soil blending, enhanced bio, etc.)

- These sites often contained higher saturated soil mass or had areas too large to cost effectively treat with ISCO alone.

- Sites containing non-aqueous phase liquids (NAPL) seemed to be more successful when extraction followed ISCO.
Factors Contributing to ISCO Failures

- Underestimating volume of saturated soil in delivery area.
- Low permeability soils- do a pilot first!
- Poor application strategy (injecting into existing wells).
- Too much sorbed mass present to enable treatment with a handful of low volume injections.
- Unreported subsurface conditions (fill, PWR, utilities, etc.)
- Poor combinations of oxidants (1 site used persulfate/permanganate, use of persulfate to treat NAPL etc.)
- Lack of geochemical data to determine oxidant spread (ROI).
Tips for a Successful ISCO Treatment

- Collect saturated soil samples - get enough samples to evaluate saturated source mass.
- Calculate approximate groundwater contamination you expect from saturated soil mass using partitioning coefficients. \(C_w = \frac{S_c}{K_d} \)
- Determine approximate pore volume (several sites reviewed only treated 1-5% of the plume area!)
- Analyze soil samples for TPH or total halogenated compounds to better assess chemical demand.
- Measure effectiveness in the field by taking geochemical readings.
Tips for a Successful ISCO Treatment - cont.

- Size/magnitude of source area often dictates remedial strategy more than plume extent.
- Most assessments focus on plume boundary delineation only.
- Many source areas are more extensive (horizontal/vertical) than suspected (see below).

Before Source Area Delineation

After Source Area Delineation

Prepared by Ken Summerour, P.G.
Questions?

Please contact Envirorisk Consultants for assistance with ISCO design and support services.